ATIVIDADE 1 - MAT - CÁLCULO DIFERENCIAL E INTEGRAL III

 

 

Questão 1

  •  

Uma equação diferencial que descreve a capitalização contínua de um investimento bancário é escrita como:

em que C é o saldo dessa aplicação no tempo t, i é a taxa de juros constante dessa aplicação e k representa depósitos (k > 0) e as retiradas (k <0). Com base nessas informações, resolva os itens a seguir:

a) Classifique essa equação diferencial quanto à ordem. Identifique a variável dependente e independente dessa equação diferencial.
b) Assumindo não haver depósitos e nem retiradas, considerando que no tempo t = 0 e o saldo dessa aplicação era de C0, determine a solução particular dessa equação diferencial.
c) Para a solução geral obtida no item (b), considere que a taxa de juros de igual a 0,75% ao mês, determine o tempo necessário, em meses, para que o capital cresça de 200%.

 

Fale Conosco

Envie sua Mensagem

Múltipla Assessoria Acadêmica - © 2024 Todos os Direitos Reservados

Converse com nossa equipe
Múltipla Assessoria
Olá, como podemos te ajudar?